Vol. 7 Issue 12, December 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at:

Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Semi-T₁ Spaces of Semi-Separation axioms in topological space

¹ Priti Kumari & ² Sukesh Kumar Das

¹ Research Scholar & ²M.Sc., University Department of Mathematics

Tilka Manjhi Bhagalpur University, Bhagalpur (812007), Bihar, India

¹pritishivay@gmail.com & ²kumarsukesh92@gmail.com

Abstract : In this paper, we introduce a new class of space in the topological space, namely $Semi-T_1$ space of Semi-Separation axioms in the topological space. We find characterizations of these spaces. Further, we study some fundamental properties of these spaces in the topological space.

Keywords: Semi-open set, Semi-closed set, Semi-closure.

I. Introduction

The term Semi- T_1 space is weaker form of T_1 space. It plays a significant role in the topological space. Ever since the concept of the term Semi- T_0 space & Semi- T_1 space in a topological space was first introduced by the mathematician S. N. Maheshwari & R. Prasad^[3] in the year 1975. The term Semi-open sets are introduced by N. Levine^[1] in 1963. Then after the mathematician S. N. Maheshwari & R. Prasad^[3] used Semi-open sets to define and introduced the Separation axioms called Semi-Separation axioms like Semi- T_0 space in the year 1975. Later, the mathematician P. Bhattacharya & B. K. Lahiri^[6] used to Semi-open sets to define the axiom Semi- $T_{1/2}$ space in the year 1982 and further investigated the separation axioms like Semi- T_0 space, Semi- T_1 space, Semi- T_2 space, Semi- T_3 space, Semi- T_4 space, Semi- T_5 space. The mathematician Charles Dorsett^[5] introduced the concept of Semi-Regular & Semi-Normal spaces and investigated their properties.

In this paper, analogous to S. N. Maheshwari & R. Prasad's^[3] Spaces, we investigate the certain results of these spaces in the topological space.

Vol. 7 Issue 12, December 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

II. Preliminaries

Throughout this paper (X,τ) is always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X,τ) then $C_L(A)$ & $I_N(A)$ are denote the closure and interior of the set A in the topological space.

2.1. Semi- T_1 space [28]: A topological space (X, J) is said to be Semi- T_1 space if and only if given any pair of distinct points x & y of X, \exists two Semi-nbd of one containing the point 'x' but not 'y' and the other containing the point 'y' but not 'x'.

Or, A topological space (X, J) is **Semi-T₁ space** if and only if given any pair of distinct points x & y of X, \exists two Semi-open sets of one containing the point 'x' but not 'y' and the other containing the point 'y' but not 'x'.

Or, A topological space (X, J) is **Semi-T**₁ **space** if and only if \exists two Semi-open set G & H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$.

2.2 . <u>Proposition</u>: The set of real space R with the usual topology U that is (R , U) is Semi- T_1 space.

Proof: Let x & y be any two distinct real numbers and let y > x and also let (y - x) = k, then $G = [x - \frac{k}{4}, x + \frac{k}{4}[\& H =]y - \frac{k}{4}, y + \frac{k}{4}[$ are two Semi-open set such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$.

Hence, the set of real space R with the usual topology U that is (R, U) is Semi- T_1 space.

2.3 . <u>Proposition</u>: A topological space (X, J) is said to be Semi-T₁ space if and only if every singleton subset $\{x\}$ of the set X is Semi-closed set in J.

Or, all the finite sets are Semi-closed set in Semi- T_1 space.

<u>Proof</u>: Let every singleton subset of the set X be Semi-closed set then we have to show that the space is Semi- T_1 space.

Let x & y be any two distinct points of the set X and since every singleton subset that is $\{x\}$ of the set X be Semi-closed set. So, $(X - \{x\})$ is a Semi-open set which contain the point 'y' but does not contain the point 'x'.

Vol. 7 Issue 12, December 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Similarly, since every singleton subset that is $\{y\}$ of the set X be also Semi-closed set. So, $(X - \{y\})$ is a Semi-open set which contain the point 'x' but does not contain point 'y'.

Hence, the space is Semi- T_1 space.

Conversely,

Let the space is Semi- T_1 space & let 'x' be any point of the set X then we have to show that the singleton set $\{x\}$ is a Semi-closed set that is $(X - \{x\})$ is a Semi-open set.

Let $y \in (X - \{x\})$ then $y \neq x$ and since the set X is Semi-T₁ space. So, \exists a Semi-open set G_y such that the point 'y' $\in G_y$ but 'x' $\notin G_y$.

It follows that, 'y' $\in G_y \subset (X - \{x\})$ & $(X - \{x\})$ is a Semi-open set.

Hence, the singleton set $\{x\}$ is a Semi-closed set.

- **2.4**. Corollary: Since, the union of finite number of Semi-closed set is Semi-closed set. So, a space X is Semi-T₁ space if and only if every finite subset of X is Semi-closed set.
- **2.5** . <u>Pre-Semi open function</u>: Let (X, J_1) and (Y, J_2) be two topological spaces and consider the function $f: (X, J_1) \to (Y, J_2)$ then the function f is said to be Pre-Semi open function if f maps each Semi-open set of (X, J_1) to a Semi-open set of (Y, J_2) .
- **2.6** . <u>Semi-homeomorphism</u>: Let (X, J_1) and (Y, J_2) be topological spaces and consider the function $f:(X, J_1) \to (Y, J_2)$ then the function f is said to be a Semi-homeomorphism of (X, J_1) onto (Y, J_2) if the function f is one-one and onto , irresolute & Pre-Semi open function.
- **2.7.** Semi-homeomorphic: A topological spaces (X, J_1) is Semi-homeomorphic with other topological spaces (Y, J_2) if \exists a Semi-homeomorphism of (X, J_1) onto (Y, J_2) .

Since, each homeomorphism of (X , J_1) onto (Y, J_2) is a Semi-homeomorphism of (X , J_1) onto (Y, J_2) but not conversely.

- ${f 2.8}$. Semi-topological property: A property of a topological space X is said to be Semi-topological property if and only if it is preserved under Semi-homeomorphism
- 2.9. <u>Proposition</u>: The property of a topological space being a Semi- T_1 space is preserved under one-one & onto Pre-Semi open function. So, it is a Semi-topological property.

Or, the homeomorphic image of Semi- T_1 space is a Semi- T_1 space.

Vol. 7 Issue 12, December 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Proof: Let (X, J) be a Semi- T_1 space and let f be a one-one Pre-Semi open function between one topological space (X, J) onto another topological space (Y, J^*) then we have to show that (Y, J^*) is also a Semi- T_1 space.

Let $y_1 \& y_2$ be any two distinct points of the set Y. Since, the function f is one-one and onto. So, \exists , distinct points $x_1 \& x_2$ of the set X such that $f(x_1) = y_1 \& f(x_2) = y_2$.

Since, (X, J) be a Semi- T_1 space. So, \exists two Semi-open set $G \& H \in J$ such that $x_1 \in G$ but $x_2 \notin G$ and $x_2 \in H$ but $x_1 \notin H$.

Since, the mapping f is a Pre-Semi open function. So, $f(G) \& f(H) \in J^*$ is a Semi-open set s. t. $y_1 = f(x_1) \in f(G)$ but $y_2 = f(x_2) \notin f(G) \& y_2 = f(x_2) \in f(H)$ but $y_1 = f(x_1) \notin f(H)$. Hence, (Y, J^*) is also a Semi- T_1 space.

Since, the property of being Semi- T_1 space is preserved under one-one & onto Pre-Semi open function. So, it is preserved under Semi-homeomorphism.

Hence, it is a Semi-topological property.

2.10. Proposition: Every metric space is a Semi-T₁ space in Semi-topological spaces.

<u>Proof</u>: Let (X, d) be a metric space and let x be any arbitrary point of the set X then we have to show that $\{x\}$ is Semi-closed set.

Let 'y' be any point of the set X different from the point 'x' and let d(x, y) = k then the sphere $S(\frac{y}{2}, k)$ is a Semi-open set of the point 'y' which does not contain the point 'x'.

Hence, the point 'y' is not a Semi-limit point of the singleton set $\{x\}$ so clearly the point 'x' cannot be Semi-limit point of $\{x\}$. It follows that, no point of set X can be the Semi-limit point of $\{x\}$. So, $SC_L\{x\} = \{x\}$.

Hence, the singleton set $\{x\}$ is a Semi-closed set.

Therefore, every metric space is a Semi-T₁ space in Semi-topological spaces.

2.11 . <u>Proposition</u>: Every finite Semi-T₁ space is discrete space in topological space.

<u>Proof</u>: Let (X, J) be a Semi- T_1 space and the set X is finite. Since, the space is Semi- T_1 space. So, every singleton subset of the set X is Semi-closed set and consequently every finite subset of

Vol. 7 Issue 12, December 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

the set X is Semi-closed set and the set X is finite. So, every subset of the set X is Semi-closed set in the topological space. Hence, the space must be discrete.

Therefore, every finite Semi- T_1 space is discrete space.

2.12 . <u>Proposition</u>: Let J and J * be two topologies on a nonempty set X and let J * be finer than J that is $J \subset J$ * then if J is Semi- T_1 space then J * is also a Semi- T_1 space.

Proof: Let x & y be any two distinct points of the set X.

Since, (X, J) is Semi- T_1 space. So, \exists two Semi-open set $G \& H \in J$ such that $x \in G$ but $y \notin G \& y \in H$ but $x \notin H$ and $J \subset J^*$ so G & H are also Semi-open sets s. t. $x \in G$ but $y \notin G \& y \in H$ but $x \notin H$ in J^* .

Hence, (X, J^*) is a ST_1 -space in topological space.

2.13. Proposition: Every Semi-T₁ space is a Semi-T₀ space in Semi-topological space.

<u>Verification</u>: Let (X, J) be a Semi-T₁ space and let x & y be any two distinct points of the set X. Since, (X, J) is Semi-T₁ space. So, \exists two Semi-open sets $G \& H \in J$ s. t $x \in G$ but $y \notin G$ & $y \in H$ but $x \notin H$.

This implies that, \exists a Semi-open set $G \in J$ s. t $x \in G$ but $y \notin G$.

So, (X, J) be a Semi- T_0 space in the Semi-topological space.

Hence, every Semi- T_1 space is a Semi- T_0 space in the Semi-topological space.

Vol. 7 Issue 12, December 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

REFERENCES

- [1] Levine, N. (1963). Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, **70**(1), 39-41.
- [2] Caldas M., (1994). **Semi-T**_{1/2} **Spaces**, Pro Math. **8**, 115-121.
- [3] Maheshwari S. N. & Prasad R. (1975). Some new Separation Axioms, Ann. Soc. Sci. Bruxelles. 89, 395-402.
- [4] Tong J., (1982). A Separation Axiom Between T₀ and T₁, Ann. Soc. Sci. Bruxelles. **96**, 85-90
- [5] Dorsett C.,(1982). **Product spaces and semi-separation axioms**, *Periodica Math. Hungar*. **13**, 39–45.
- [6] Bhattacharyya, P. & Lahiri, B. K. (1987). Semi-generalized closed set in topology, *Indian Journal of Math.*, **29**, 375-382.
- [7] Hamllet N., (1975). A correction to the paper Semi-open sets and semi-continuity in topological spaces by Norman Levine, *Proc. Amer. Math. Soc.*, **49**, 458–460.
- [8] Jankovic D. S. & Reilly I. L., (1985). On semi separation properties, *Indian J. Pure Appl. Math. Sci.*, 16, 957–964.
- [9] Munkres J. R., (1975). Topology, A First Course, Prentice-Hall, Inc. .
- [10] Noiri T., (1976). On semi-T₂-spaces, Ann. Soc. Sci. Bruxelles Ser. I, 90, 215–220.
- [11] Crosseley S. G. (1978). A note on semi topological properties, *Proc. Amer. Math. Soc.* 72, 409 412.
- [12] Munshi B. M., (1986). **Separation Axioms**, *Acta Ciencia India*, 12, 140 -144.
- [13] Levine N., (1961). A decomposition of continuity in topological spaces, *Amer. Math. Monthly*, **68**, 44-46.
- [14] David R. Wilkins & Hilary, (2001). **Topological spaces**, course 212.
- [15] K. Priti,. Some Properties of Semi-topological concepts, TMBU, Bhagalpur, Bihar, India, 812007
